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Summary The menstrual cycle is divided into hypothermic and hyperthermic phases based on

the periodic shift in the basal body temperature (BBT), reflecting events occurring in the ovary.

In the present study, we proposed a state-space model that explicitly incorporates the biphasic

nature of the menstrual cycle, in which the probability density distributions for the advancement

of the menstrual phase and that for the BBT switch depending on a latent state variable. Our

model derives the predictive distribution of the day of the next menstruation onset that is

adaptively adjusted by accommodating new observations of the BBT sequentially. It also enables

us to obtain conditional probabilities of the woman being in the early or late stages of the cycle,

which can be used to identify the duration of hypothermic and hyperthermic phases, possibly as

well as the day of ovulation. By applying the model to real BBT and menstruation data, we show

that the proposed model can properly capture the biphasic characteristics of menstrual cycles,

providing a good prediction of the menstruation onset in a wide range of age groups. The

application of the proposed model to a large data set containing 25,622 cycles provided by 3,533

women further highlighted the between-age differences in the population characteristics of

menstrual cycles, suggesting its wide applicability.

Key words: Menstrual cycle length (MCL), Ovulation, Periodic phenomena, Phase

identification, Sequential Bayesian filtering and prediction.



1 Introduction

During the reproductive age, women experience recurring physiological changes known as

menstrual cycles. The cycle starts on the first day of menstruation, followed by a pre-ovulatory

period referred to as the follicular phase. After ovulation, the cycle enters a post-ovulatory period

referred to as the luteal phase, lasting until the day before the next menstruation onset. Although

menstrual cycles generally last 28 days, the length of the menstrual cycle exhibits significant

variation, both within and among individuals.1 Variation in menstrual cycle length is mainly

attributed to the follicular phase, as the follicular phase shows greater variation in length than

the luteal phase.2 Thus, determining the time of ovulation can be difficult.

The basal body temperature (BBT) also reflects this biphasic aspect of the menstrual cycle;

BBT tends to be relatively low during the follicular phase (the hypothermic phase), increasing by

0.3 to 0.5 ◦C after the cycle enters the luteal phase (the hyperthermic phase).3,4 Since a shift in

the BBT may be indicative of ovulation, daily BBT records could be used to estimate the day of

ovulation and associated fertile interval. However, given the large variability of the BBT and a

potential delay in the shift of the BBT, the estimation of ovulation based on the BBT may be

error-prone.3,5,6

Considerable effort has been made to develop menstrual cycle-related statistical models.

Barrett-Marshall-Schwartz models are a class of statistical models for human fecundability, in

which the occurrence of pregnancy is explained by the intercourse pattern and day-specific

probability of conception within the fertile interval.7,8 The fertile interval within the menstrual

cycle refers to the time period where the day-specific probability of conception is not negligible;

thus, intercourse can result in pregnancy. It is estimated to last about 6 days, starting ∼ 5 days

prior to ovulation and ending on the day of ovulation.9,10 The fertile interval can be identified

based on various biological markers for ovulation, such as BBT, urinary luteinizing hormone level,

and cervical mucus. However, none of these markers identify ovulation perfectly; therefore, error

in the identification of the day of ovulation is considered an important issue in studies of human

fecundability.6,11 Time-to-pregnancy models are another class of statistical models for human

fecundability, which explain the number of menstrual cycles required to achieve a clinical

pregnancy. Additional statistical models for human fecundability have been reviewed in.12–16

Another line of research involves the development of statistical models explaining the

variability in the menstrual cycle length (MCL). This includes the following types of models:
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mixture distribution models explaining the long right tail in the distribution of the MCL1,17,18;

longitudinal models, accounting for the within subject-correlation in the MCLs1,18,19; and a

change point model identifying the menopausal shift in the moments of the MCL distribution20.

Furthermore, Bortot et al.21 proposed a state-space modeling framework providing a predictive

distribution of the MCL that is conditional on the past time series of the MCL. Moreover, recent

studies have considered the joint modeling of the MCL and fecundability.18,22,23

Although BBT is an easily observed quantity relevant to the menstrual cycle, the development

of statistical models explaining periodic BBT fluctuations has received little attention. Scarpa and

Dunson4 applied Bayesian functional data analysis to BBT time series data that characterized

BBT fluctuations in normal cycles parametrically and identified abnormal BBT trajectories

nonparametrically. Fukaya et al.24 recently proposed a state-space model involving the menstrual

phase as a latent state variable explaining the BBT time series. Applying a sequential Bayesian

filtering algorithm enabled the authors to obtain filtering distribution of the menstrual phase,

providing a predictive distribution for the onset of the next menstruation sequentially.

In the model proposed by Fukaya et al.,24 the biphasic nature of the menstrual cycle was not

accounted for in an explicit manner. Specifically, the model used a trigonometric series to explain

the periodic BBT fluctuations, and the biphasic pattern may thus appear as a result of the

model-fitting. In addition, the model assumed a single probability density distribution for the

advancement of the menstrual phase, and did not account for differences in the distributions of

the length of the hypothermic and hyperthermic phases. However, there is another possible model

formulation that is biologically more natural and interpretable, based on previous knowledge of

the menstrual cycle. This model involves dividing a cycle into two distinct stages, with each stage

characterized by specific statistical distributions for the BBT and the advancement of the

menstrual phase.

In the present study, we propose such an “explicit biphasic menstrual cycle model”, as an

extension of the model proposed by Fukaya et al.,24 which we refer to as an “implicit biphasic

menstrual cycle model”. In our explicit model, the probability density distributions of the

advancement of the menstrual phase and the BBT switch, depending on a latent state variable.

Our model can therefore be seen as a self-excited threshold autoregressive state-space model.25

Most of the statistical inferences applied to the implicit model described in the previous paper24

can be similarly applied to the current explicit model. Thus, the conditional distribution of the

latent menstrual phase variable can be obtained using a sequential Bayesian filtering algorithm,
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which in turn can be used to yield a predictive distribution of the day of menstruation onset.

Furthermore, as we describe below, the conditional distribution of the latent menstrual phase

variable naturally provides the probability of a subject being in the earlier or later stage of the

cycle, which may potentially be used to estimate the timing of ovulation. By applying the

proposed model to a large data set of menstrual cycles, we illustrate its wide applicability. We

show that the proposed model can properly capture the biphasic characteristics of menstrual

cycles, shedding light on between-age differences in the population characteristics of menstrual

cycles.

The remainder of this paper is organized as follows. In Section 2, we detail the proposed

method, formulating the model and describing statistical inferences involving latent state

variables and parameters. We also explain how the predictive distribution for the next

menstruation onset and the probability that a subject is in the first or second stage can be

obtained, based on the conditional distribution of the menstrual phase variable. Section 3

presents an application of the proposed model to a real menstrual cycle data set collected from a

large number of women. For eight age groups, ranging from the late teens to the early 50s, we

report the maximum likelihood estimates of the model parameters, and examine the accuracy of

the prediction of menstruation onset. We also provide the joint and marginal distributions of the

lengths of the first and second stages, which was judged based on the smoothed distribution of

the menstrual phase. A concluding discussion is provided in Section 4.

2 Model description and inferences

2.1 State-space model of the menstrual cycle

Suppose for i = 1, . . . , I female subjects, a record of BBT measurement, yit, and an indicator of

the onset of menstruation, zit, was obtained for days t = 1, . . . , Ti. By zit = 1, we denote that

menstruation for subject i started on day t, whereas zit = 0 indicates that day t was not the first

day of menstruation for the subject i. We denote the BBT time series and menstruation data

obtained from the subject i up to time t as Yit = (yi1, . . . , yit) and Zit = (zi1, . . . , zit), respectively.

We assumed that the time series for each subject was independent from the time series of other

subjects.

We considered the phase of the menstrual cycle, θit ∈ R, to be a latent state variable. In the

following, we assumed that menstrual cycles are periodic in terms of θit with a period of 1. We
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divided each cycle into two distinct stages, the first stage (0 ≤ θit − ⌊θit⌋ < 0.5) and the second

stage (0.5 ≤ θit − ⌊θit⌋ < 1), where ⌊x⌋ is the floor function returning the largest previous integer

for x. We defined a set of real numbers corresponding to the latent menstrual phase being in the

first and second stages of the cycle as Θ1 = {θ ⊂ R | 0 ≤ θ − ⌊θ⌋ < 0.5} and

Θ2 = {θ ⊂ R | 0.5 ≤ θ − ⌊θ⌋ < 1}, respectively.

We let ϵit reflect the daily advance of the phase for subject i between days t− 1 and t, and

assumed that it was a positive random variable independently following a gamma distribution

with varying parameters. Thus, the system model can be described as:

θit = θi,t−1 + ϵit (1)

ϵit ∼ Gamma {α (θi,t−1) , β (θi,t−1)} (2)

{α (θi,t−1) , β (θi,t−1)} =


(αi1, βi1) when θi,t−1 ∈ Θ1

(αi2, βi2) when θi,t−1 ∈ Θ2.

(3)

We assumed that the system model parameters switched between two stages, enabling a

description of the difference in the variability of the length of these stages. Under this

assumption, the conditional distribution of θit, given θi,t−1, is a gamma distribution with a

probability density function:

p(θit | θi,t−1) = Gamma {α (θi,t−1) , β (θi,t−1)}

=
β (θi,t−1)

α(θi,t−1)

Γ {α (θi,t−1)}
(θit − θi,t−1)

α(θi,t−1)−1 exp {−β (θi,t−1) (θit − θi,t−1)} . (4)

We assumed that the distribution of the observed BBT, yit, was conditional on the menstrual

phase θit. Assuming a Gaussian observation error, the observation model for the BBT can be

expressed as:

yit = µ (θit) + eit (5)

eit ∼ Normal
{
0, σ2 (θit)

}
(6)

{
µ (θit) , σ

2 (θit)
}
=


(µi1, σ

2
i1) when θit ∈ Θ1

(µi2, σ
2
i2) when θit ∈ Θ2.

(7)

Again, observation model parameters
{
µ (θit) , σ

2 (θit)
}
switched depending on the underlying

stage within the cycle, in order to describe a biphasic pattern in the BBT. Conditional on θit, yit
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then follows a normal distribution with a probability density function:

p(yit | θit) = Normal
{
µ (θit) , σ

2 (θit)
}

=
1√

2πσ2 (θit)
exp

[
−{yit − µ (θit)}2

2σ2 (θit)

]
. (8)

For the menstruation onset, we assumed that menstruation starts when θit crosses the smallest

following integer. This can be represented as follows:

zit =


0 when ⌊θit⌋ = ⌊θi,t−1⌋

1 when ⌊θit⌋ > ⌊θi,t−1⌋.
(9)

In rewriting this deterministic allocation in a probabilistic manner, zit follows a Bernoulli

distribution conditional on (θit, θi,t−1):

p(zit | θit, θi,t−1) = (1− zit) {I(⌊θit⌋ = ⌊θi,t−1⌋)}+ zit {I(⌊θit⌋ > ⌊θi,t−1⌋)} , (10)

where I(x) is the indicator function that returns 1 when x is true or 0 otherwise.

The model involves, under no restriction, a total of 8× I parameters; that is, the model has an

independent set of parameters (αi1, αi2, βi1, βi2, µi1, µi2, σi1, σi2) for each subject i. However, in

most cases, it is likely that data are not sufficiently abundant to estimate parameters separately

for each subject. Restricted versions of the model can be considered by assuming that certain

parameters are equal among subjects. For example, we can assume that a set of parameters

(αi1, αi2, βi1, βi2, µi1, µi2, σi1, σi2) is equal for all I subjects, in which case there would be only 8

parameters to be estimated. This approach pools information across subjects and allows the

estimation of parameters, even when the time series is not of sufficient length for each subject.

Between-subject variation can be accounted for using covariate information, such as the age of the

subject, when available. For example, between-subject differences in αi1(> 0) can be modeled as:

logαi1 = γ0 +
∑

j γjxij , where xij is the jth covariate for subject i. In this case, the γs are the

parameters to be estimated.

Let ξ be a vector of the parameters of the model. Given data (YiTi , ZiTi) and a distribution

specified for initial states p(θi1, θi0) for each subject i, the parameters in ξ can be estimated using

the maximum likelihood method. The log-likelihood for subject i can be expressed as:

li(ξ;YiTi , ZiTi) = log p(yi1, zi1 | ξ) +
Ti∑
t=2

log p(yit, zit | Yi,t−1, Zi,t−1, ξ), (11)
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where

log p(yi1, zi1 | ξ) = log

∫ ∫
p(yi1 | θi1)p(zi1 | θi1, θi0)p(θi1, θi0)dθi1dθi0. (12)

For t = 2, . . . , Ti,

log p(yit, zit | Yi,t−1, Zi,t−1, ξ) = log

∫ ∫
p(yit | θit)p(zit | θit, θi,t−1)p(θit, θi,t−1 | Yi,t−1, Zi,t−1)dθitdθi,t−1,

(13)

which can be sequentially obtained using the Bayesian filtering technique described below. Note

that, for each subject i, p(yit | θit)(t ≥ 1) and p(θit, θi,t−1 | Yi,t−1, Zi,t−1)(t ≥ 2) depend on ξ;

however, this dependence is not explicitly described here for notational simplicity. Since the

subject time series is assumed to be independent, the joint log-likelihood is the sum of the I

subject log-likelihoods:

l(ξ;Y1T1 , . . . , YITI
, Z1T1 , . . . , ZITI

) =

I∑
i=1

li(ξ;YiTi , ZiTi). (14)

2.2 State estimation and calculation of log-likelihood by using sequential

Bayesian filtering

The joint distribution of the phase of subject i at successive time points t and t− 1, conditional

on the observations obtained up to time u, p(θit, θi,t−1 | Yiu, Ziu), is referred to as a predictive

distribution when t > u, as a filtering distribution when t = u, and as a smoothed distribution

when t < u. Given a state-space model, its parameters, and data, these conditional distributions

can be obtained by using recursive formulae for the state estimation problem, which are referred

to as the Bayesian filtering and smoothing equations. Details regarding the state estimation of

state-space models have been previously described (e.g.,26,27).

Although these conditional probability distributions are often analytically intractable for

non-linear, non-Gaussian state-space models, they can be obtained approximately for the

self-excited threshold autoregressive state-space model described above. To this end, we applied

Kitagawa’s non-Gaussian filtering procedure,28 which provides a numerical approximation of the

joint conditional probability density p(θit, θi,t−1 | Yiu, Ziu). The numerical procedure applied to

the implicit biphasic menstrual cycle model described by Fukaya et al.24 can be used to our

explicit biphasic menstrual cycle model in the same manner. Since the subject time series are

assumed to be independent, conditional probability distributions can be obtained separately for
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each subject i. Once the numerical approximation of the joint conditional probability density

p(θit, θi,t−1 | Yiu, Ziu) is obtained, the marginal probability densities (e.g.,

p(θit | Yiu, Ziu) =
∫
p(θit, θi,t−1 | Yiu, Ziu)dθi,t−1) can also be obtained straightforwardly; these are

used to obtain the predictive distribution for the day of menstruation onset and the conditional

probabilities for the stages of the cycle as described below. The log-likelihood for data at a

particular time (Equations 12 and 13) can be calculated for each subject as a by-product of

obtaining the filtering distribution. Missing observations are allowed in the sequential Bayesian

filtering procedure. More details can be found in.24

2.3 Sequential Bayesian prediction for the day of menstruation onset

Fukaya et al.24 reported that the filtering distribution of the menstrual phase in their state-space

model could be used to obtain the predictive distribution for the next menstruation onset (i.e., a

predictive distribution for the length of the current cycle), which was conditional on the

accumulated data available at the time point of the prediction. Since filtering distributions of the

menstrual phase can be obtained using the Bayesian filtering procedure, the prediction of the day

of onset for the next menstruation can be adaptively adjusted by accommodating new

observations sequentially. This sequential predictive framework can be applied to the current

explicit model in the same manner; however, the detailed calculations are more complicated due

to the biphasic nature of the system model.

We denote, for k = 1, 2, . . . , the probability that the next menstruation of subject i occurs on

the t+ kth day, conditional on the data available for her at the tth day as h(k | Yit, Zit). Given

the marginal filtering distribution for the phase state p(θit | Yit, Zit), the conditional probability is

as follows:

h(k | Yit, Zit) =

∫
f(k | θit)p(θit | Yit, Zit)dθit, (15)

where f(k | θit) is the conditional probability function for the day of menstruation onset.24 We

provide details for calculation of f(k | θit) under the proposed explicit biphasic menstrual cycle

model in the supplementary material for this article. Briefly, although f(k | θit) can be obtained

for θit ∈ Θ2 straightforwardly, it is more involved for θit ∈ Θ1. This is because the probability

that the first stage of the cycle lasts until the t+ j − 1th day and the next menstruation occurs on

the t+ kth day, denoted as ϕ(j, k | θit) (j = 1, . . . , k), is needed to obtain f(k | θit) such that

f(k | θit) =
∑k

j=1 ϕ(j, k | θit). Furthermore, the calculation of ϕ(j, k | θit) requires convolutions of
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probability distributions, rendering it being approximated numerically.

We can choose the k giving the highest probability, maxh(k | Yit, Zit), as a point prediction for

the day of menstruation onset of subject i.

2.4 Identification of stages of the cycle

For some t and u, the probability that the menstrual phase of subject i at time t is in the first

stage of the cycle, conditional on data obtained by time u, can be given as:

Pr(θit ∈ Θ1 | Yiu, Ziu) =

∫
Θ1

p(θit | Yiu, Ziu)dθit. (16)

By contrast, the conditional probability that the menstrual phase is in the second stage of the

cycle can be given as:

Pr(θit ∈ Θ2 | Yiu, Ziu) =

∫
Θ2

p(θit | Yiu, Ziu)dθit

= 1− Pr(θit ∈ Θ1 | Yiu, Ziu). (17)

Note that these probabilities are prospective when the conditional distribution of θit is a predictive

distribution (t > u), whereas they are retrospective when a smoothed distribution is used (t < u).

A subject i can be judged as being in the first or second stage of the cycle based on the above

probabilities. We can decide θit ∈ Θ1 when Pr(θit ∈ Θ1 | Yiu, Ziu) ≥ 0.5, and θit ∈ Θ2 otherwise.

We applied this decision rule in the analysis shown in section 3, although other rules could be

applied.

An R script illustrating how to implement the numerical procedures for sequential Bayesian

filtering, menstruation onset prediction, and judgement of stages is provided as a supplementary

web material.

3 Application

3.1 Data

We organized data comprising daily recorded BBT and the day of menstrual onset, which were

collected from a total of 3,784 women between 2007 and 2014 via a web service called Ran’s story

(QOL Corporation, Tomi, Japan). Details of Ran’s story service, of which users were supposed to

be ethnically Japanese, were described in.24 We focused on menstrual cycle data that were
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provided by users aged between 15 and 54 years during this period, and classified each menstrual

cycle into eight age groups (15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, and 50–54 years)

based on the age of the user at the beginning of the cycle.

Cycles containing one or more BBT observations during the first seven days were defined as

applicable to our analyses, as we used BBT data in that time period to standardize the level of

BBT as explained below. In addition, for each age group, the longest and shortest 5% of cycles

were discarded to omit cycles with extreme length. This data selection procedure resulted in a

data set containing 25,622 cycles provided by 3,533 unique users (Table 1, top rows).

In order to elucidate age-specific characteristics, we further generated a subset of the above

data set, which was randomly sampled while eliminating the within-woman dependency as much

as possible, and was used to estimate model parameters and the accuracy of the prediction of

menstruation (Table 1, middle and bottom rows). For each of the 20s and 30s age group, in which

a large number of users were registered, 450 users were selected randomly, so that 450 cycles can

be sampled from unique users. Cycles were then assigned to 300 cycles for parameter estimation

and 150 cycles for the assessment of predictive accuracy. Similarly, for each of the 40s age group,

450 cycles were sampled randomly, and then divided into 300 cycles for parameter estimation and

150 cycles for the assessment of predictive accuracy. However, due to the limited number of users,

not all cycles were attributed to unique users in these age groups. Finally, for the late teens and

early 50s age groups, all available cycles were assigned randomly for parameter estimation and the

assessment of predictive accuracy, because the number of cycles in these age groups was the most

limited. For the 15–19 years age group, 300 cycles were used for parameter estimation and the

remaining 111 cycles were used for the assessment of predictive accuracy. For the 50–54 years age

group, 120 cycles were assigned for parameter estimation and the remaining 52 cycles were used

for the assessment of predictive accuracy.

As the level of BBT time series varies between cycles, we used standardized BBT data in the

following analyses. For each cycle, BBT time series was standardized by subtracting the median

of BBT recorded in the first seven days of the cycle from the raw BBT data.

3.2 Parameter estimation

For each age group, an explicit biphasic menstrual cycle model was fitted to the data for

parameter estimation (Table 1, middle rows). We treated cycles within each age group as

independent and assumed that a set of age-specific parameters was applicable. Model parameters
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were estimated by maximizing the joint log-likelihood function (Equation 14) numerically, with

the specification of a uniform prior distribution for the initial states p(θi1, θi0) of each cycle, i. In

order to fit the model and evaluate the log-likelihood, we used a non-Gaussian filter discretizing

the state space into 512 intervals.

Parameter values were distinctly different between two stages (Table 2). System model

parameters were characterized by larger values of α and β in the first stage, except for the oldest

age group (50–54 years). These estimates generally implied that the first stage is on average

longer and is more variable than the second stage (Figure 1). Between-age differences in the stage

length distribution were also discernible: the stage length tended to become variable in late teens

and early 50s (Figure 1).

As expected, in all age groups, mean BBT was estimated to be higher in the second stage: the

increase in BBT (µ2 − µ1) ranged from 0.342 to 0.413 (Table 2). No clear difference was found in

the standard deviation of observation errors of BBT (Table 2).

3.3 Accuracy of the prediction of menstruation onset

The accuracy of the prediction for the day of menstruation onset of the explicit biphasic

menstrual cycle model was compared to that of several variants of state-space models for

menstrual cycles and the conventional calendar calculation method. Models used for this

comparison are summarized in Table 3. Like the fully explicit model, parameters of other

state-space models were estimated by fitting the model to data for parameter estimation (Table 1,

middle rows). The predictive error was measured by the root mean square error (RMSE). As the

explicit model and implicit model can adaptively adjust the prediction based on the daily BBT

records, for these models, RMSE was estimated for several points in time within the cycle;

namely, at the day of onset of the previous menstruation, as well as 21, 14, 7, 6, 5, 4, 3, 2, and 1

day(s) before the day of the next menstruation onset. Cycles that were shorter than 21 days were

omitted from the RMSE calculation for 21 days before the day of onset of next menstruation.

The calendar calculation method predicts the next menstruation day as the day after a fixed

number of days from the onset of preceding menstruation, which thus does not update the

prediction within the cycle. For each age class, we used a fixed number of days for calendar-based

prediction that gave the lowest RMSE.

Results are shown in Figure 2. Overall, the predictive error (RMSE) was found to be larger in

young age groups (late teens and early 20s) and the oldest age group. In the fully explicit model,
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RMSE was in general gradually decreased as the onset day of next menstruation approached. In

all age groups, the model prediction was superior to the conventional calendar calculation method

in the last few days of the cycle. On the other hand, RMSE tended to increase in the late stage of

the cycle in the restricted explicit model, except for the oldest age group. The model prediction

may be considerably worse than the calendar calculation method, especially in the middle age

classes. Implicit models tended to give relatively poor prediction in the early stages of the cycle.

However, in the last few days of the cycle, they attained small RMSE that was comparable to the

fully explicit model. In the 50–54 years age group, results from the implicit models were identical.

This was because in this age group, the system model parameters (i.e., α and β) were estimated

to be very small, which almost always predict the onset of next menstruation occurring in the

following day (a phenomena that was previously known to occur in the implicit models24). In this

setting, RMSE decreases constantly, and finally reaches to zero 1 day before menstruation onset.

However, such a manner of prediction is of course meaningless. The results together indicate that

introducing the biphasic structure into the system model was critical to improve predictions in a

wide range of age class.

3.4 Distribution of the length of two stages

Based on the stage identification method described in section 2.4, we determined lengths of the

first and second stages of each menstrual cycle in the entire data set (Table 1, top rows). We used

the smoothed probability distribution of the menstrual phase to determine the conditional

probability of each stage. The joint and marginal distributions of the length of those stages are

shown in Figure 3. In all age groups, there was a negative correlation between the length of the

first and second stages. We also found that in the second stage of some age groups, there was a

peak located at 0 or 1, indicating the existence of monophasic cycles.

The summary of two stage lengths is shown in Table 4. We found that in all age groups, the

first stage is longer, on average, and is more variable than the second stage. The standard

deviation of both stages tended to increase in either end of the age group. Furthermore, the

percentage of monophasic cycles, which were arbitrarily defined as cycles that the length of the

second stage was estimated to be less than three days, was also higher in these age groups.
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4 Discussion

In the present study, we developed a self-excited autoregressive state-space model that explicitly

accommodates the biphasic nature of the menstrual cycle, as an extension of the state-space

model for the menstrual cycle proposed by Fukaya et al..24 The present model was fitted to

menstrual cycle data obtained from a large number of women in different age groups. We found

that the estimated parameters were clearly different between the first and second stages of the

cycle (Table 2). Mean BBT was estimated to be lower in the first stage of the cycle and to

increase by approximately 0.4 ◦C in the second stage of the cycle. This result is consistent with

that of Scarpa and Dunson,4 in which BBT data obtained from a European fertility study were

analyzed and the BBT was shown to shift an average of 0.4 ◦C in normal menstrual cycles

exhibiting a biphasic pattern. Furthermore, estimates of the system model parameters suggested

that the model predicts the length of the first stage as longer and more variable than that of the

second stage (Figure 1). This result coincides with the fact that variability in the MCL can be

mainly attributed to variability in the length of the follicular phase.2 Thus, the results indicate

that the proposed model adequately captures the characteristics of the two phases in the

menstrual cycle, based on time series data of the BBT and menstruation.

The merit of the proposed biphasic model is that it can provide a model-based judgement of

the stage of the cycle. This led to the observation of a mild negative correlation between the

lengths of the first and second stages in a wide range of age groups (Figure 3), which agrees with

a previous study reporting a similar tendency in the lengths of the follicular and luteal phases.2

Furthermore, we found that the length of the second stage was extremely short in a portion of the

menstrual cycles, indicating the existence of menstrual cycles exhibiting a monophasic BBT

pattern, which has been recognized to occur in approximately 20% of cycles even when data were

collected from normally cycling women.3 These results affirm that the explicit biphasic menstrual

cycle model can provide a reasonable judgement of the subject being in the hypothermic or

hyperthermic phase. We note that our analysis highlighted between-age group differences in the

phase length distribution, where the durations of hypothermic and hyperthermic phases were

more variable in the late teens and early 50s (Table 4). It was also evident that monophasic cycles

appear most often in these age groups (Table 4).

The conditional probabilities for a subject being in the first or second stages of the menstrual

cycle could be used for a model-based judgement of the day of ovulation.9,10 Several methods
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have been proposed to objectively identify the day of ovulation based on the BBT, which include

a widely-used rule of thumb called the three-over-six rule,21,29,30 a method based on the

cumulative sum test,31 and a stopping rule based on a change-point model.32 A limitation shared

among these methods is that they may be difficult to apply, or less effective,32 when observations

in the BBT time series are missing. However, missing values can be formally handled in the

state-space modeling framework; thus, the proposed method does not suffer from missing

observations. Furthermore, judgements regarding ovulation can be made in a prospective,

real-time, or retrospective manner, depending on the type of conditional distribution (i.e.,

predictive, filtering, or smoothed distribution, respectively). The proposed model may therefore

be considered as a new approach to identify the day of ovulation based on the BBT, for which

previous methods are considered to be error-prone.3–5 However, the magnitude of the

identification error is currently unknown, and further validation is required in the future. A

possible delay in the shift of BBT relative to ovulation5 may deserve a careful consideration: we

realize that our estimates of the length of the second stage (Table 4) were consistently shorter

than those previously reported (ca. 12.5 – 14.0 days; see Fehring et al.2 and references therein).

Another merit of the proposed model is that it can derive a predictive distribution of the

length of the current menstrual cycle sequentially. Our analysis showed that with the

accumulation of the within-cycle trajectory of the BBT, the proposed model can provide a

prediction that was superior to that for the conventional calendar calculation (Figure 2).

Furthermore, an explicit consideration of the biphasic characteristics enabled the proposed model

to give a better prediction in a wide range of age groups compared to that with implicit models

(Figure 2). Although it is beyond the scope of this study, a further optimization of the predictive

accuracy could be considered by exploring better system or observation components, or both. To

this end, a previous study suggested a hybrid approach, in which the conventional prediction

method is used in the earlier stages of the cycle.24 We note that Bortot et al.21 proposed another

state-space modeling framework that can be used to predict the length of the current menstrual

cycle, based on the subject’s past time series of the MCL. We did not compare the predictive

accuracy of the proposed model to that of the model of Bortot et al.,21 because the data in the

present study did not include a sufficiently long time series for each subject. A comparison

between the models of Bortot et al.21 and Fukaya et al.24 is reported elsewhere.24

As described in Section 2.1, the model can accommodate variations in the parameters by

including covariates, which can be useful in explaining differences in the characteristics of the
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menstrual cycles associated with subject-specific characteristics and/or conditions that vary

between cycles within a subject.33,34 Another possibility for modeling variability in the

parameters involves the inclusion of random effects. However, this complicates the calculation of

the log-likelihood considerably, rendering parameter estimation more challenging. Specifically, the

inclusion of random effects requires an alternative estimation approach, such as Bayesian

estimation using the Markov chain Monte Carlo method, which may result in a considerable

increase in computational time. Finally, we note that the proposed method assumes that the

BBT of the subject fluctuates under natural conditions. Therefore, the proposed method may not

be useful for women utilizing hormonal contraception, which can interfere with physiological

phenomena related to the menstrual cycle.
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Table 1: Summary of the menstrual cycle data. Note that users who provided records over several
years can be counted in multiple age groups.

Age (years)
15–19 20–24 25–29 30–34 35–39 40–44 45–49 50–54

Entire data set
No. of subjects 118 542 1,020 1,090 781 364 134 19
No. of cycles 411 2,636 5,087 6,496 5,903 3,479 1,438 172
Range of cycle length (15, 53) (21, 50) (24, 48) (24, 44) (23, 40) (21, 41) (20, 56) (16, 87)
Mean of cycle length 30.4 31.8 31.5 30.4 29.2 27.9 28.8 32.3
Median of cycle length 30 31 31 30 29 27 27 28
SD of cycle length 6.7 5.6 4.7 4.1 3.4 3.6 5.8 12.7
No. of observations 12,660 84,538 161,531 198,871 173,563 97,610 41,647 5,582
Percentage of missing observations 13.7 15.8 14.0 10.8 10.5 9.0 8.8 4.0

Data for parameter estimation
No. of subjects 97 300 300 300 300 148 84 17
No. of cycles 300 300 300 300 300 300 300 120
Range of cycle length (15, 53) (21, 49) (24, 47) (24, 43) (24, 40) (22, 40) (20, 51) (16, 87)
Mean of cycle length 30.4 31.7 32.0 30.8 29.8 28.1 28.1 31.4
Median of cycle length 30 31 31 30 29 27 27 28
SD of cycle length 6.7 5.4 4.8 4.4 3.8 3.6 4.8 11.8
No. of observations 9,281 9,822 9,887 9,537 9,247 8,701 8,674 3,819
Percentage of missing observations 13.5 16.9 16.0 14.1 12.8 9.0 9.1 3.7

Data for predictive accuracy estimation
No. of subjects 64 150 150 150 150 101 70 15
No. of cycles 111 150 150 150 150 150 150 52
Range of cycle length (16, 49) (21, 49) (24, 45) (24, 42) (24, 40) (22, 40) (21, 56) (17, 77)
Mean of cycle length 30.5 33.4 32.1 31.0 29.7 27.9 29.6 34.3
Median of cycle length 30 32 31 31 29 27 27 29.5
SD of cycle length 6.7 6.4 4.6 3.9 3.8 3.9 6.7 14.6
No. of observations 3,481 5,162 4,962 4,803 4,610 4,333 4,577 1,827
Percentage of missing observations 13.9 17.4 16.3 14.5 12.7 10.1 8.6 4.4

18



T
ab

le
2:

M
ax

im
u
m

li
k
el
ih
o
o
d
es
ti
m
at
es

of
th
e
p
ar
am

et
er
s
an

d
th
ei
r
95

%
co
n
fi
d
en

ce
in
te
rv
al
s
(i
n
b
ra
ck
et
s)
.
†
C
on

fi
d
en

ce
in
te
rv
a
ls

w
er
e

n
ot

ca
lc
u
la
te
d
b
ec
au

se
th
e
H
es
si
an

of
lo
g-
li
k
el
ih
o
o
d
w
as

si
n
gu

la
r.

A
ge

(y
ea
rs
)

15
–1

9
20

–2
4

25
–2

9
30

–3
4

35
–3

9
4
0
–4

4
4
5–

49
5
0–

54

S
y
st
em

m
o
d
el

F
ir
st

st
ag

e
α
1

0
.6
3
2

0.
94

2
0.
87

1
1.
31

6
0.
95

2
1
.0
00

0.
64

4
0.
05

4
(0
.4
7
5,

0.
84

2)
(0
.6
91

,
1.
28

3)
(0
.6
72

,
1.
12

8)
(0
.6
65

,
2.
60

2)
(0
.7
55

,
1.
2
01

)
†

(0
.5
1
1,

0
.8
1
1)

(0
.0
3
6,

0
.0
80

)
β
1

34
.9
23

52
.3
20

43
.1
45

64
.4
30

40
.4
55

4
2
.9
20

2
6
.9
02

1.
85

3
(2
5
.7
92

,
47

.2
87

)
(3
7.
76

4,
72

.4
88

)
(3
2.
79

4,
56

.7
62

)
(3
3.
70

1,
12

3.
17

7)
(3
1.
70

6,
51

.6
18

)
†

(2
1
.0
17

,
34

.4
3
4)

(0
.9
7
0
,
3.
54

2)
S
ec
on

d
st
a
ge

α
2

0
.2
1
6

0.
27

1
0.
35

0
0.
36

4
0.
53

3
0
.3
98

0.
33

4
0.
17

7
(0
.1
8
1,

0.
25

8)
(0
.2
28

,
0.
32

1)
(0
.2
93

,
0.
41

8)
(0
.3
04

,
0.
43

5)
(0
.4
13

,
0.
6
88

)
(0
.3
37

,
0.
46

9
)

(0
.2
7
9
,
0.
39

9)
(0
.1
2
6,

0
.2
4
9)

β
2

1
.8
3
7

2.
86

5
5.
14

1
5.
21

8
8.
66

9
5
.7
83

4.
47

2
2.
17

0
(1
.3
3
0,

2.
53

6)
(2
.1
83

,
3.
75

9)
(4
.0
13

,
6.
58

6)
(4
.0
20

,
6.
77

2)
(6
.2
45

,
12

.0
3
3)

(4
.6
8
8,

7
.1
3
4)

(3
.4
5
5,

5
.7
89

)
(1
.1
86

,
3
.9
69

)
O
b
se
rv
at
io
n
m
o
d
el

F
ir
st

st
ag

e
µ
1

−
0
.0
40

−
0.
04

0
−
0.
02

9
−
0
.0
12

−
0
.0
23

−
0.
02

4
−
0
.0
1
8

−
0
.0
5
4

(−
0
.0
47

,−
0
.0
34

)
(−

0.
0
47

,−
0
.0
33

)
(−

0.
03

5,
−
0.
02

2)
(−

0
.0
18

,−
0
.0
05

)
(−

0
.0
31

,−
0
.0
15

)
(−

0.
0
2
9,
−
0.
0
19

)
(−

0
.0
2
4
,−

0.
0
12

)
(−

0
.0
6
3
,−

0
.0
44

)
σ
1

0
.2
31

0.
23

9
0.
22

8
0.
21

7
0.
25

2
0
.2
0
7

0
.2
0
3

0
.2
26

(0
.2
26

,
0.
2
35

)
(0
.2
3
5,

0.
24

4)
(0
.2
23

,
0.
23

3)
(0
.2
13

,
0.
22

1)
(0
.2
47

,
0.
2
5
7)

(0
.2
0
4,

0
.2
11

)
(0
.1
99

,
0
.2
07

)
(0
.2
20

,
0.
23

3
)

S
ec
on

d
st
a
ge

µ
2

0
.3
71

0.
37

4
0.
36

9
0.
37

7
0.
36

3
0
.3
3
3

0
.3
2
5

0
.3
45

(0
.3
59

,
0.
3
82

)
(0
.3
6
3,

0.
38

4)
(0
.3
60

,
0.
37

8)
(0
.3
68

,
0.
38

7)
(0
.3
54

,
0.
3
7
2)

(0
.3
2
5,

0
.3
41

)
(0
.3
17

,
0
.3
33

)
(0
.3
30

,
0.
35

9
)

σ
2

0
.2
47

0.
22

4
0.
22

0
0.
22

3
0.
20

5
0
.1
9
9

0
.1
9
6

0
.2
16

(0
.2
39

,
0.
2
55

)
(0
.2
1
7,

0.
23

1)
(0
.2
13

,
0.
22

7)
(0
.2
17

,
0.
23

0)
(0
.1
98

,
0.
2
1
1)

(0
.1
9
3,

0
.2
04

)
(0
.1
91

,
0
.2
02

)
(0
.2
07

,
0.
22

5
)

S
h
if
t
in

B
B
T

µ
2
−

µ
1

0.
41

1
0.
41

3
0.
39

8
0.
38

9
0.
38

6
0
.3
5
7

0
.3
4
2

0
.3
98

(0
.3
99

,
0.
4
23

)
(0
.4
0
2,

0.
42

5)
(0
.3
87

,
0.
40

8)
(0
.3
78

,
0.
40

0)
(0
.3
75

,
0.
3
9
7)

(0
.3
4
8,

0
.3
67

)
(0
.3
33

,
0
.3
52

)
(0
.3
82

,
0.
41

4
)

19



T
ab

le
3:

A
li
st

of
m
o
d
el
s
fo
r
w
h
ic
h
ac
cu

ra
cy

of
th
e
p
re
d
ic
ti
on

of
m
en

st
ru
at
io
n
on

se
t
w
as

ex
am

in
ed

.
N
ot
e
th
at

in
ou

r
a
p
p
li
ca
ti
o
n
,
th
e

in
d
ex

i
d
en

ot
es

cy
cl
es

ra
th
er

th
an

su
b
je
ct
s.

M
o
d
el

C
o
d
e

S
y
st
em

m
o
d
el

O
b
se
rv
at
io
n
m
o
d
el

S
eq
u
en
ti
a
l
B
ay
es
ia
n
p
re
d
ic
ti
on

F
u
ll
y
ex
p
li
ci
t

F
E

θ i
t
=

θ i
,t
−
1
+

ϵ i
t;
ϵ i
t
∼

G
am

m
a
{α

(θ
i,
t−

1
)
,β

(θ
i,
t−

1
)}

y i
t
=

µ
(θ

it
)
+

e i
t;
e i
t
∼

N
o
rm

a
l{ 0

,σ
2
(θ

it
)}

y
es

{α
(θ

i,
t−

1
)
,β

(θ
i,
t−

1
)}

=

{ (α
1
,β

1
)

w
h
en

θ i
,t
−
1
∈
Θ

1

(α
2
,β

2
)

w
h
en

θ i
,t
−
1
∈
Θ

2

{ µ
(θ

it
)
,σ

2
(θ

it
)} =

{ (µ
1
,σ

2 1
)

w
h
en

θ i
t
∈
Θ

1

(µ
2
,σ

2 2
)

w
h
en

θ i
t
∈
Θ

2

R
es
tr
ic
te
d
ex
p
li
ci
t

R
E

θ i
t
=

θ i
,t
−
1
+

ϵ i
t;
ϵ i
t
∼

G
am

m
a(
α
,β

)
y i

t
=

µ
(θ

it
)
+

e i
t;
e i
t
∼

N
o
rm

a
l{ 0

,σ
2
(θ

it
)}

y
es

{ µ
(θ

it
)
,σ

2
(θ

it
)} =

{ (µ
1
,σ

2 1
)

w
h
en

θ i
t
∈
Θ

1

(µ
2
,σ

2 2
)

w
h
en

θ i
t
∈
Θ

2

Im
p
li
ci
t
1

I1
θ i

t
=

θ i
,t
−
1
+

ϵ i
t;
ϵ i
t
∼

G
am

m
a(
α
,β

)
y i

t
=

µ
(θ

it
)
+

e i
t;
e i
t
∼

N
o
rm

al
( 0
,σ

2
)

y
es

µ
(θ

it
)
=

a
+

b 1
co
s
2
π
θ i

t
+

c 1
si
n
2
π
θ i

t

Im
p
li
ci
t
2

I2
θ i

t
=

θ i
,t
−
1
+

ϵ i
t;
ϵ i
t
∼

G
am

m
a(
α
,β

)
y i

t
=

µ
(θ

it
)
+

e i
t;
e i
t
∼

N
o
rm

al
( 0
,σ

2
)

y
es

µ
(θ

it
)
=

a
+

∑ 2 m
=
1
b m

co
s
2
m
π
θ i

t
+

c m
si
n
2
m
π
θ i

t

Im
p
li
ci
t
3

I3
θ i

t
=

θ i
,t
−
1
+

ϵ i
t;
ϵ i
t
∼

G
am

m
a(
α
,β

)
y i

t
=

µ
(θ

it
)
+

e i
t;
e i
t
∼

N
or
m
a
l( 0

,σ
2
)

y
es

µ
(θ

it
)
=

a
+

∑ 3 m
=
1
b m

co
s
2
m
π
θ i

t
+

c m
si
n
2
m
π
θ i

t

C
al
en

d
a
r
ca
lc
u
la
ti
on

C
N
A

N
A

n
o

20



Table 4: Summary of lengths of two stages. Monophasic cycles were defined as cycles in which the
length of the second stage was estimated to be less than three days, based on the phase identification
method described in section 2.4. The smoothed probability distribution of the menstrual cycle phase
was used to determine the stage of the menstrual cycle.

Age (years)
15–19 20–24 25–29 30–34 35–39 40–44 45–49 50–54

All cycles
First stage

Mean 21.4 22.0 20.6 19.5 18.5 17.4 18.3 23.2
Median 21 21 20 19 18 17 17 18
SD 7.6 6.6 5.7 5.0 4.4 4.9 7.2 15.2

Second stage
Mean 9.1 9.8 10.9 10.9 10.7 10.5 10.4 9.1
Median 10 10 11 11 11 11 11 10
SD 5.3 4.4 3.9 3.6 3.4 3.8 4.5 6.5

Without monophasic cycles
First stage

Mean 20.4 21.3 20.2 19.2 18.2 16.9 17.4 18.3
Median 20 21 20 19 18 16 16 16
SD 7.1 6.2 5.4 4.7 4.1 4.4 6.3 10.0

Second stage
Mean 10.5 10.6 11.3 11.1 11.0 11.0 11.2 11.9
Median 10 11 11 11 11 11 11 11.5
SD 4.4 3.7 3.4 3.3 3.0 3.2 3.8 4.9

Percentage of monophasic cycles 15.6 8.5 3.8 2.8 2.9 4.9 8.1 24.4
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Figure 1: Distribution of the stage length derived from estimated parameters. The probability
distribution of the length ofm-th stage fm(k)(m = 1, 2) was obtained as: fm(1) = 1−G(0.5;αm, βm)
and for k > 1, fm(k) = G {0.5; (k − 1)αm, βm}−G(0.5; kαm, βm), where G( · ; s, r) is the distribution
function of the gamma distribution with shape parameter s and rate parameter r. Each panel
depicts the results for an age group.
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Figure 2: Root mean square error (RMSE) of prediction of the day of onset of menstruation across
the day at which prediction was made. “X”, on the horizontal axis, indicates the day of onset of
previous menstruation. FE: Fully explicit model; RE: Restricted explicit model; I1: Implicit model
1; I2: Implicit model 2; I3: Implicit model 3; C: Calendar calculation method; refer to Table 3 for
details.
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Figure 3: The contour plots show the kernel density estimates of the durations of the first and
second stages. Dense regions are drawn in brighter colors. The marginal distributions of the stage
lengths are shown on the upper and right side of the plots.
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