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Abstract5

Molecular analysis of DNA left in the environment, known as environmental DNA6

(eDNA), has proven to be a powerful and cost-effective approach to infer7

occurrence of species. Nonetheless, relating measurements of eDNA concentration8

to population abundance remains difficult because detailed knowledge on the9

processes that govern spatial and temporal distribution of eDNA should be10

integrated to reconstruct the underlying distribution and abundance of a target11

species. In this study, we propose a general framework of abundance estimation for12

aquatic systems on the basis of spatially replicated measurements of eDNA. The13

proposed method explicitly accounts for production, transport, and degradation of14

eDNA by utilizing numerical hydrodynamic models that can simulate the15

distribution of eDNA concentrations within an aquatic area. It turns out that,16
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under certain assumptions, population abundance can be estimated via a Bayesian17

inference of a generalized linear model. Application to a Japanese jack mackerel18

(Trachurus japonicus) population in Maizuru Bay revealed that the proposed19

method gives an estimate of population abundance comparable to that of a20

quantitative echo sounder method. Furthermore, the method successfully identified21

a source of exogenous input of eDNA (a fish market), which may render a22

quantitative application of eDNA difficult to interpret unless its effect is taken into23

account. These findings indicate the ability of eDNA to reliably reflect population24

abundance of aquatic macroorganisms; when the “ecology of eDNA” is adequately25

accounted for, population abundance can be quantified on the basis of26

measurements of eDNA concentration.27

Key words: Abundance estimation, Environmental DNA, Japanese jack mackerel28

(Trachurus japonicus), Quantitative echo sounder, Quantitative PCR, Tracer model29
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Introduction30

Knowledge of the distribution and abundance of species is crucial for ecology and related31

applied fields such as wildlife management and fisheries. In particular, quantitative32

assessments are often required to effectively monitor and manage ecosystems because trends in33

environmental stressors such as climate change, habitat modification, and pollution can result34

in shifts in the distribution and the level of population abundance of species. Nevertheless,35

quantification of natural population of species can be challenging, if not impossible, at least36

due to the extensive effort required for field survey and the low detection probability of species37

or individuals (Yoccoz et al. 2001).38

The detection and quantification of environmental DNA (eDNA) is an emerging39

methodology for ecological studies and could enhance the ability of investigators to infer40

occurrence and abundance of species. This approach has been applied, especially but not41

exclusively, to aquatic species such as fish and amphibians and has been identified as a powerful42

and yet cost-effective tool for species detection (Bohmann et al. 2014, Rees et al. 2014,43

Thomsen and Willerslev 2015, Goldberg et al. 2016, Deiner et al. 2017, Hansen et al. 2018).44

Challenges remain, however, in quantitative applications of eDNA. Since earlier studies45

revealed positive correlations between species abundance and eDNA concentration (Takahara46

et al. 2012, Thomsen et al. 2012, Goldberg et al. 2013, Pilliod et al. 2013, Eichmiller et al.47

2014), it has been expected that local population abundance may be inferred by measuring the48

concentration of eDNA at a given locality. Indeed, an analytical framework proposed for49

eDNA-based abundance estimation assumes a probability distribution that represents the50

quantitative relation between eDNA concentration and the underlying population size51

(Chambert et al. 2018). A recent empirical study showed that the abundance of anadromous52

fish in a river can be quantified based on frequent measurements of eDNA concentration, when53

streamflow is taken into consideration (Levi et al. 2019). Nonetheless, such a definite relation54

may not always be present, possibly depending on e.g., the shedding rate, transport, and55

exogenous input of eDNA (Pilliod et al. 2013, Eichmiller et al. 2014, Lacoursière-Roussel et al.56

2016, Yamamoto et al. 2016, Jo et al. 2017), especially in natural environments as indicated by57
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a meta-analysis (Yates et al. 2019).58

The fundamental factors that underlie such context dependency are the “ecology of59

eDNA”: the distribution of eDNA in space and time stems from processes governing the origin,60

state, transport, and fate of eDNA particles (Barnes and Turner 2016). Thus, in applications61

of the eDNA methodology, detailed information about such processes may be critical. Without62

relevant knowledge of these processes, for example, the spatial and temporal scales of63

information provided by eDNA remain largely uncertain (Thomsen and Willerslev 2015,64

Goldberg et al. 2016, Hansen et al. 2018). Therefore, here, our purpose was to develop a65

general approach to eDNA-based abundance estimation that can fully account for the ecology66

of eDNA, i.e., the rate of production and degradation of eDNA as well as the transport of67

eDNA within a flow field in an aquatic area of interest (Figure 1). Although quantitative68

models of eDNA in which these processes are explicitly accounted for have been proposed for69

linear habitats such as rivers (Sansom and Sassoubre 2017, Carraro et al. 2018), no such model70

is currently available for general aquatic systems, including the marine environment.71

In this study, we make use of a tracer model, namely, a numerical hydrodynamic model72

that can simulate the distribution of eDNA concentrations within an aquatic area (Shulman73

et al. 2003). Under certain assumptions, the behavior of the model can also be regarded74

mathematically as a linear function of an input vector representing the distribution of75

population abundance levels (densities) within the area. We show that the estimation of76

population abundance can then be achieved via a Bayesian inference of a generalized linear77

model (Figure 1). We applied this approach to a population of the Japanese jack mackerel78

(Trachurus japonicus, a commercially important fish species) in Maizuru Bay, Japan (Figure79

2). On the basis of the eDNA concentration measurements and a tracer model configured for80

Maizuru Bay, we obtained an estimate of fish population abundance in the bay. This estimate81

was then verified via a parallel estimate of abundance obtained by a quantitative echo sounder82

method. The results suggest that the proposed approach can reliably quantify fish population83

abundance in the bay.84
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Materials and Methods85

A general framework for abundance estimation86

The tracer model as a linear function87

Here, we define a tracer model as a numerical hydrodynamic model that simulates generation,88

transport, and decay of particles (i.e., eDNA) on the basis of a flow field determined by given89

physical conditions within an aquatic area of interest. In this study, we assume a tracer model90

for a three-dimensional discrete space in which the entire aquatic area of interest is discretized91

into grid cells of known volume. A tracer model can in principle simulate the ecology of eDNA92

and thus derives a spatial distribution of eDNA within the aquatic area, given that per capita93

and unit time shedding rates of eDNA, degradation rates of eDNA, and density (or94

equivalently, abundance) of organisms in each grid cell are specified, in addition to the flow95

field (Figure 1). The main idea that underlies the framework we propose is that we can regard96

a tracer model as a function that takes a vector of cell level density of organisms as an input97

and outputs eDNA concentration in each grid cell at a point in time; thus, the inference of98

abundance is an inverse problem: finding an input vector of a tracer model (i.e., density of99

organisms in each grid cell) that best explains measurements of eDNA concentration that are100

collected at a point in time and are replicated spatially within the aquatic area of interest.101

Nevertheless, such a problem is difficult to solve under the general conditions where102

both the environment and abundance vary in a complex manner. We therefore make several103

key assumptions that simplify the problem (Figure 1). First, we assume that during two time104

points t and s (< t), key environmental variables for hydrodynamic processes are known from105

some observations and/or model prediction so that the flow field can be determined and106

plugged in to the tracer model. Here, t refers to the point in time at which eDNA107

concentration is observed at multiple locations within the aquatic area, and s denotes some108

point in time sufficiently far away from t such that eDNA concentration at t is virtually109

independent from that at s. Operationally, s and t define the time domain of the tracer model.110

Second, we assume that the rates of production and degradation of eDNA are known in each111
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grid cell during the period between s and t. They may either be regarded as constant across112

space and time or assumed to vary depending on known environmental variables, such as water113

temperature, salinity, and pH, so that the rates of generation and disappearance of eDNA can114

be determined completely in the tracer model. In addition, we assume that these rates are115

independent of the eDNA concentration, and thus both production and degradation of eDNA116

are linear processes. Third, we suppose that in each grid cell, all eDNA particles arise117

exclusively from individuals of the target species that are identical in their eDNA-shedding118

rate. Finally, we assume that abundance is stationary in each grid cell throughout the period119

between s and t (i.e., the demographic closure assumption; Williams et al. 2002).120

Under these assumptions, a tracer model can be regarded as a linear function. We121

denote density of organisms in cell i (i = 1, . . . ,M) by xi and define x = (x1, x2, . . . , xM ). Let122

us denote the water volume of each cell by v = (v1, v2, . . . , vM ) so that abundance in cell i and123

in the whole aquatic area is expressed as vixi and v⊤x, respectively (here, a⊤ means the124

transpose of vector a). The tracer model predicts eDNA concentration in each grid cell at time125

point t that results from the generation, advection, diffusion, and degradation of eDNA126

occurring between s and t within a given flow field, which we denote (without an explicit index127

of t) by c = (c1, c2, . . . , cM ). If aij is defined as the (per unit density) contribution of cell j to128

eDNA concentration in cell i at time t, then eDNA concentration can be expressed as129

ci = ai1x1 + ai2x2 + · · ·+ aiMxM . If we designate A = (aij)M×M , then this equation can be130

written in a matrix form as c = Ax. Thus, although a tracer model indeed represents131

temporal evolution of eDNA concentration within the period between s and t according to132

some differential equations (presented below), its behavior can be described simply — under133

the assumptions noted above — by matrix A, which maps the vector of density x onto the134

vector of eDNA concentration c. For i = 1, . . . ,M , the ith column of A can be obtained135

numerically as a result of execution of the tracer model between time points s and t with a136

vector of density in which cell i has a unit density and all other cells have null density.137
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Fitting the tracer model to eDNA concentration data138

We assume that eDNA concentration was measured in N samples collected within the aquatic139

area of interest at a point in time (or, in practice, within a sufficiently short period). Let us140

denote the observed eDNA concentration in sample n by yn (n = 1, . . . , N) and express it with141

vector y = (y1, . . . , yN ). In the following text, we suppose that all eDNA measurements are142

positive (i.e., yn > 0). Note, however, that negative samples could also be included in the143

analysis given that the detection process of eDNA is modeled jointly (Carraro et al. 2018). We144

define i(n) as an index variable that means the index of the cell in which sample n was145

obtained. If we let B = (ai(n)j)N×M , the prediction of the tracer model for the data vector, as146

a function of density vector x is then expressed as Bx.147

Because the tracer model yields a linear predictor for y, we can apply the (generalized)148

linear modeling framework (McCullagh and Nelder 1989) to estimate density vector x; in149

particular, we can regard B and x as a design matrix and a vector of coefficients of a linear150

regression model, respectively (note that because x represents density, the searches for151

estimates should be within the space of parameters such that xi ≥ 0 for all i). Considering152

that eDNA concentration data often represent a lognormal error structure (e.g., Takahara153

et al. 2012, Thomsen et al. 2012, Eichmiller et al. 2014, Wilcox et al. 2016, Jo et al. 2017), we154

can consider the following model:155

log y ∼ N
(
logBx, σ2IN

)
, (1)

where N (µ,Σ) is a multivariate normal distribution with mean vector µ, and covariance156

matrix Σ; σ2 is a residual variance, and Im is a m×m identity matrix. Note that this is a157

generalized linear model with an exponential link function (McCullagh and Nelder 1989). The158

maximum likelihood method for this model yields an estimate x̂ that minimizes the residual159

square error | log y − logBx|22.160

The standard maximum likelihood approach is, however, not applicable to this model161

when M > N because the maximum likelihood estimate of x is not uniquely identified in this162

setting. This may be a typical situation at a reasonable level of spatial discretization for the163
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tracer model and sampling effort of eDNA. Additional assumption (or regularization) on the164

regression coefficients is necessary to make an inference based on such a singular model. We165

can apply a Bayesian approach in which a common probability distribution is specified on x as166

a prior distribution. This approach effectively specifies x as random effects, allowing to167

“borrow strength” to estimate each element of x (Kéry and Schaub 2012). Alternatively, when168

some covariates, assumed to covary with density, are available for each cell, an additional169

model component for density can be introduced to effectively reduce the number of unknown170

parameters (Carraro et al. 2018). Specifically, density of the target species can be modeled, for171

example, as logx = Zβ, where Z is a matrix of covariates, and β is a vector of coefficients172

(including an intercept). Note, however, that the addition of a nonlinear component for173

density takes the model beyond the standard generalized linear modeling framework.174

An application to a marine fish population175

Measurement of jack mackerel eDNA in Maizuru Bay176

The study was conducted in Maizuru Bay (Kyoto prefecture, Japan; 35°29′N, 135°23′E) to177

estimate abundance of the jack mackerel (T. japonicus) via concentration of eDNA. The bay178

has a surface area of ∼22.87 km2 with a maximum water depth of approximately 30 m, and179

connects with Wakasa Bay through a narrow bay mouth in its north (Figure 2).180

According to long-term underwater visual surveys, the jack mackerel is numerically the181

most dominant fish species in shallow (< 10 m in depth) coastal waters in this area (Masuda182

2008); their body size ranges from 10 to 45 mm in standard length offshore and 40–120 mm183

standard length in the shallow rocky reef habitat (Masuda et al. 2008). The study was184

conducted during the peak season of jack mackerel recruitment from the offshore pelagic zone185

to a coastal shallow reef habitat, where the jack mackerel population in the bay is dominated186

by new recruits. In the following analysis, we therefore assumed that the population is187

represented by individuals of size ∼3 cm (body length) and ∼1 g (body weight; see Appendix188

S1, Supporting information).189

We conducted the water sampling on 21 and 22 June 2016 from a research vessel at 100190

stations located approximately on ∼400 m grids in Maizuru Bay (Figure 2). At each sampling191
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station, we captured a 1-L sea water sample at three depths: the surface, middle, and bottom.192

The middle and bottom depths were defined as 5 m from the surface, which was just below the193

pycnocline, and 1 m above the sea floor, respectively. We filtered water samples on the same194

day of the field survey, which were then subjected to eDNA extraction and subsequent195

quantitative PCR (qPCR). qPCR was carried out in triplicate for each sample. Details of the196

measurement of eDNA concentration are fully described in Appendix S2, Supporting197

information.198

Development of the eDNA tracer model199

To obtain the flow field in Maizuru Bay, we configured the Princeton Ocean Model (POM)200

with a scaled vertical coordinate (i.e., the sigma coordinate system, in which the number of201

layers of the water column is the same for every grid irrespective of the sea depth; Mellor 2002)202

for the bay. The model represented Maizuru Bay by 20,484 grid cells. Specifically, the bay was203

discretized by 2,276 horizontal lattice grids at a resolution of 100 m, and the grids had nine204

non uniform vertical layers, with finer resolution near the surface; the boundary of each layer205

in the sigma coordinate was set as σ = 0.000, −0.041, −0.088, −0.150, −0.245, −0.374,206

−0.510, −0.646, −0.796, and −1.000. The configuration of the model was achieved by means207

of the bottom topography of the bay, data and model estimates of surface meteorological208

conditions, estimated river discharges, and the model results of Wakasa Bay as the open209

boundary conditions (Yoon and Kasai 2017); additional details are described in Appendix S3.210

The model simulated flow fields within the bay from 1 June 2016, under the initial conditions211

interpolated from the model results of Yoon and Kasai (2017), to the final day for the water212

sampling (i.e., 22 June 2016). The time steps of the simulation were set to 0.1 s for the213

external mode to update the surface elevation and vertically averaged velocities, whereas they214

were 3 s for the internal mode to update the horizontal velocities, potential temperature,215

salinity, and turbulence quantities (Mellor 2002).216

The concentration of eDNA of jack mackerels was then simulated based on the flow217

fields produced by the POM. The evolution of eDNA concentration, denoted by c, is218

represented as219
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∂c

∂t
+ u∇(c) = ∇∗(d∇(c))− λc+ βx, (2)

where u is a three-dimensional velocity vector, ∇(c) is the gradient of c, ∇∗(·) is the divergence220

operator, d is a vector of diffusion coefficients, λ is a degradation rate of eDNA, β is a221

per-capita shedding rate of jack mackerel DNA, and x is the density of jack mackerels in the222

cell. The eDNA degradation rate was assumed to be constant and was adopted from an223

estimate obtained in tank experiments where the same species-specific primer set was224

employed (λ = 0.044 h−1; Jo et al. 2017). The eDNA shedding rate of the jack mackerel was225

assumed to be constant; it was derived mathematically and found to be β = 9.88× 104 copies226

per individual per hour, according to the results of tank experiments conducted by Maruyama227

et al. (2014) and Jo et al. (2017). Details of this derivation are provided in Appendix S4,228

Supporting information. The settling and resuspension of eDNA particles were ignored in Eq.229

2 given that little is known about the rate of these processes.230

For each of the 20,484 columns of the A matrix, the tracer model was executed from 1231

June 2016 to 22 June 2016 to generate the values of the column elements. The elements in A232

were specified by the daily averages on 22 June and then used in the subsequent analyses.233

Estimation of jack mackerel abundance based on the eDNA tracer model234

We fitted the model with lognormal error distribution (Eq. 1) to the eDNA concentration data235

collected in Maizuru Bay. During the model fitting, we omitted negative samples in which the236

number of remaining observations was N = 729. For vector of density x, we specified an237

independent lognormal prior with unknown prior mean µ and standard deviation τ :238

logx ∼ N
(
logµ1M , τ2IM

)
, (3)

where 1M represents a vector of all ones with length M . Because N was significantly smaller239

than M , we were pessimistic about estimating the spatial variation in cell level density with240

reasonable precision. Our main goal of the inference was therefore to quantify the bay-level241

abundance v⊤x along with its uncertainty.242
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With uniform positive priors on µ, τ , and σ, we fitted the model via a fully Bayesian243

approach. Posterior samples were obtained by the Markov chain Monte Carlo (MCMC)244

method implemented in Stan (version 2.18.1; Carpenter et al. 2017) in which three245

independent chains of 10,000 iterations were generated after 1,000 warm-up iterations. Each246

chain was thinned at intervals of 10 to save the posterior sample.247

Convergence of the posterior was checked for each parameter with the R̂ statistic.248

Posterior convergence was achieved at a recommended degree (R̂ < 1.1; Gelman et al. 2013) in249

almost all parameters except log x in four cells. We decided, however, that the results are solid250

because the posterior of the bay-level abundance — the target of the inference — fully251

converged. The goodness-of-fit assessment of the model, measured by the χ2-discrepancy252

statistic (Conn et al. 2018), gave no clear indication of a lack of model fit (Bayesian p-value:253

0.404).254

We note that the independence assumption of the fitted model (Eq. 1) ignores the255

correlation between triplicates within each water sample, resulting in a potential256

underestimation of the uncertainty in the estimates of jack mackerel abundance. Although257

such a within-sample correlation could be accommodated in the model by explicitly accounting258

for the covariance structure of data, we here adopt the independence assumption for the259

purpose of illustrating the proposed framework.260

Estimation of jack mackerel abundance from quantitative echo sounder data261

An independent estimate of jack mackerel abundance was obtained based on a calibrated262

quantitative echo sounder by a standard acoustic survey method (Simmonds and MacLennan263

2005). The acoustic survey was conducted during the survey cruise for the water sampling264

(described above). We used the KSE300 echo sounder (Sonic Co. Ltd., Tokyo, Japan) with265

two transducers (T-182, 120 kHz, and T-178, 38 kHz; beam type, split-beam; beam width,266

8.5°; pulse duration, 0.3 ms; ping rate, 0.2 s), which were mounted off the side of the research267

vessel at a depth of 1 m. The acoustic devices were operated during the entire survey cruise to268

record all acoustic reflections, except when the research vessel stopped at each sampling269

station where the recording was stopped to avoid reflection from the sampling gear and cables.270
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The research vessel ran at ∼4 knots, on average, between the sampling stations. The echo271

intensity data were denoised and cleaned in Echoview ver. 9.0 (Echoview Software Pty. Ltd.,272

Tasmania, Australia). We omitted signals between the sea bottom and 0.5 m above it to273

exclude the acoustic reflection from the sea floor. Additionally, we eliminated signals from sea274

nettles (Chrysaora pacifica) by filtering reflections of −75 dB.275

From the obtained acoustic data, the reflections of jack mackerel were extracted by the276

volume back scattering strength difference (∆SV ) method (Miyashita et al. 2004, Simmonds277

and MacLennan 2005). ∆SV was defined as the difference in the volume backscattering278

strength (SV ) between the two frequencies as follows:279

∆SV = SV 120 kHz − SV 38 kHz. (4)

According to field validation in Maizuru Bay combining acoustic surveys and visual280

confirmation of jack mackerel schools by snorkelling, we assumed the range of ∆SV of jack281

mackerel between −6.4 and 5.2 dB. This criterion discriminates the jack mackerel from larval282

Japanese anchovy (Engraulis japonicus), the subdominant species in the bay (Masuda 2008),283

which reflects the high frequency echo strongly as compared to low frequency (Ito et al. 2011)284

and was used to determine SV of the jack mackerel in 1 m3 water cubes. SV values were285

extracted for every 10 m segment of the survey line for every 1 m of depth using Echoview ver.286

9.0.287

Density of jack mackerel in a 1 m3 water cube, denoted by D, was obtained as288

D =
10

SV 120 kHz
10

10
TS
10

(5)

where TS is the target strength of an individual jack mackerel. By assuming that jack289

mackerel population in the bay was dominated by individuals of the size 3 cm, we chose290

TS = −59.6 dB (Nakamura et al. 2013, Yamamoto et al. 2016). The fish density for each 10 m291

segment and 1 m of depth on the echo sounder track lines was then matched with the grid292

specification of the tracer model.293

To obtain an estimate (and its associated uncertainty) of the bay-level abundance of294
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jack mackerel that can be compared to that obtained with the eDNA-based approach, a linear295

mixed model was fitted to the fish density data via a fully Bayesian approach. Details of the296

abundance estimation for quantitative echo sounder data are described in detail in Appendix297

S5, Supporting information.298

Results299

The proposed method yielded an estimate of fish abundance that was more than two times300

higher than the quantitative echo sounder estimate; although the point estimate of the eDNA301

method was of the same order of magnitude as the quantitative echo sounder estimate, there302

was no overlap in the two 95% highest posterior density intervals (HPDIs) (Table 1). In the303

eDNA method, however, we could identify a coordinate of grids in which density of jack304

mackerels was estimated to be unrealistically high; fish abundance in the nine vertical cells in305

this location was estimated at as much as tens of millions of individuals (posterior median and306

95% HPDI: 1.35× 107 [0.00 to 1.77× 107] individuals; Figure 2b). It is located next to a307

wholesale fish market (Figure 2a), which has been suspected as a significant source of308

exogenous jack mackerel eDNA in Maizuru Bay (Yamamoto et al. 2016, Jo et al. 2017). We309

therefore regarded the extreme estimates in these cells as resulting from a massive eDNA input310

from the market and excluded them from the inference of the bay-level fish abundance. This311

correction for the eDNA method reduced the estimate of fish abundance in the bay. As a312

result, the abundance estimates of the two methods become more comparable; the estimate313

corrected for the eDNA method was 1.42 times higher than the estimate via the quantitative314

echo sounder method, with the two 95% HPDIs overlapping (Table 1).315

The eDNA concentration spatial distribution predicted by the fitted model316

corresponded well to the observed values (posterior median and 95% HPDI of the correlation317

coefficient: 0.652 [0.638 to 0.664]; Figures 3 and 4). Nevertheless, there was a high level of318

uncertainty in the estimate of fish density in each grid cell (Figure 2b), as expected given the319

small number of samples relative to the number of grid cells. As a result, neither a discernible320

spatial pattern of fish density nor a clear correlation between the estimates of the two methods321

was evident at the cell scale (Figure 5 and Supplementary Table S1).322
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To examine the robustness of the inference, we conducted an additional analysis in323

which fish density was estimated in coarser resolutions while using the same tracer model.324

Specifically, we fitted three model variants wherein coarser grid blocks are defined by325

aggregating horizontally neighboring cells at intervals of 200, 300, or 400 m, respectively, for326

each of which fish density was estimated (Supplementary Figure S1). The three model variants327

yielded an estimate of the bay-level fish abundance that are close to the original estimate328

(Supplementary Table S1). Moreover, they indicated an extremely high fish density in the grid329

blocks that are next to the fish market (Supplementary Figure S1). The estimates of the330

bay-level fish abundance, corrected for the fish market, were also similar to the original331

estimate (Supplementary Table S1). A better correlation was observed in coarser grid blocks332

between fish density estimated with the eDNA method and that estimated with the333

quantitative echo sounder method (Supplementary Table S1).334

Discussion335

The eDNA methods are rapidly developing technologies that have a great potential to336

facilitate the understanding and management of aquatic species, although their quantitative337

applications are still the critical step. This study presents a novel approach to abundance338

estimation based on quantitative eDNA measurements into which a numerical tracer model is339

incorporated to explicitly account for the details of the ecology of eDNA (Figure 1). Briefly, it340

requires the following steps: (1) Develop a hydrodynamic model for an aquatic area of interest.341

(2) Collect spatially replicated samples at a point of time from the aquatic area to measure342

eDNA concentration. (3) Configure the tracer model for the field measurement of eDNA; this343

will require knowledge of the rate of eDNA shedding and degradation. Then, run the tracer344

model repeatedly to obtain a design matrix of a generalized linear model that relates the345

underlying density to observed eDNA concentration. (4) Fit the generalized linear model to346

eDNA concentration data statistically, to estimate density of organisms for each discretized347

grid cell. This approach may be flexibly applied to a wide array of aquatic systems in which348

hydrodynamics and rates of eDNA shedding and degradation are modeled, thereby broadening349

the scope of the general idea implemented recently in a one-dimensional lotic system with a350
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single eDNA source (Sansom and Sassoubre 2017, Levi et al. 2019) and in a river network351

system with multiple eDNA sources (Carraro et al. 2018).352

The application of the proposed approach to the Japanese jack mackerel population in353

Maizuru Bay indicated that abundance of species can be reliably estimated by means of eDNA354

in a coastal ecosystem, where oceanographic processes drive transportation of eDNA355

(Andruszkiewicz et al. 2019). Furthermore, the results revealed that the method can356

distinguish major exogenous sources of eDNA, which have been recognized as a nuisance factor357

in eDNA applications especially for species subject to fishery (Yamamoto et al. 2016, Jo et al.358

2017). These results suggest that when the processes of eDNA shedding, transport, and359

degradation were properly accounted for, an absolute estimation of abundance of aquatic360

macroorganisms can be practically achieved based on quantitative measurement of eDNA.361

The proposed framework, however, has several limitations in its current form. For362

example, it requires several key assumptions, such as the stationarity (i.e., demographic363

closure) of the population and homogeneity of individuals in terms of their rate of eDNA364

shedding (Figure 1). This implies that the inferences can be biased by fluctuations in the365

spatial distribution of abundance, as well as heterogeneity in the shedding rate of eDNA366

and/or other factors that deviate from the modeling assumptions, if such factors are present.367

In addition, the number of eDNA samples may typically be smaller than the number of grid368

cells in the tracer model, thus requiring additional models describing among-cell variation in369

population density to make statistical inference (see Materials and Methods). Although our370

results indicated that the method can be applied even with these limitations, further371

methodological development would be warranted.372

Ambiguity in the modeled processes could add further bias and uncertainty in the373

inferences based on a tracer model. The tracer model depends on the specified values for the374

rates of eDNA shedding and degradation, which have been quantified experimentally (e.g.,375

Maruyama et al. 2014, Sassoubre et al. 2016, Jo et al. 2017, Nukazawa et al. 2018, Jo et al.376

2019); yet our knowledge is still limited to predict them accurately, and even less is known377

about the difference between these rates in field and laboratory environments. Despite being378

ignored in our application, gravitational settling (and possibly, resuspension) of eDNA379
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particles may even have a significant effect on the spread of eDNA in a coastal ecosystem380

(Andruszkiewicz et al. 2019). However, little is known about the rates of these processes.381

Because the research on aquatic eDNA of macroorganisms is still in its infancy since its382

discovery (Ficetola et al. 2008), more work is needed to elucidate the processes that determine383

a distribution of eDNA in the field; a better understanding of the ecology of eDNA will384

improve the accuracy of quantitative eDNA approaches.385

In our application, the local variation in fish density was not estimated reasonably; this386

is probably because the number of grid cells was too large relative to the number of eDNA387

samples. Given the logistical constraints in collecting eDNA samples, this may occur388

frequently in practical applications. A solution for better inference of local fish density may be389

to aggregate neighboring grid cells to yield coarser spatial units on which specific density is390

estimated. This approach may not only reduce the number of unknown quantities in the391

model, but it also may increase the likelihood that the assumption of population closure is392

met. In fact, we observed in our additional analysis an improved consistency in the estimated393

fish density obtained based on eDNA and the acoustic survey (Supplementary Table S1).394

Although it is computationally more challenging, specifying a prior distribution that explicitly395

accounts for spatial autocorrelation in fish density could be useful for obtaining smoothed396

estimates. When some relevant covariates are available for each spatial unit, spatial variation397

in density may be inferred more explicitly through an additional model component for local398

density (see Materials and Methods). As a possible alternative approach, eDNA measurements399

could be combined with classical protocols for abundance estimation to improve the inference400

on spatial variation in density (Chambert et al. 2018). However, it will require a further401

generalization of the model to formally accommodate different types of observations.402

It has been argued that in an application of the eDNA method, careful consideration of403

details of the ecology of eDNA is critical (Bohmann et al. 2014, Rees et al. 2014, Thomsen and404

Willerslev 2015, Barnes and Turner 2016, Goldberg et al. 2016, Deiner et al. 2017, Hansen405

et al. 2018). We implemented this idea in a quantitative eDNA method, leading to integration406

of eDNA concentration measurements and hydrodynamic modeling for abundance estimation.407

The relatively less explored field of quantitative eDNA applications lies in the multispecies408
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context, which involves eDNA metabarcoding rather than the targeted quantitative PCR409

(qPCR) method (Deiner et al. 2017). The proposed approach would be applicable to the410

emerging quantitative metabarcoding technique (e.g., Ushio et al. 2018) in the same way, which411

may enable researchers to analyze many aquatic species at one time. Exploring between-species412

differences in the rate of eDNA shedding and degradation may therefore be worthwhile. In413

addition to remarkable efficiency in species detection, we expect that eDNA methodologies can414

enhance the ability of investigators to gain quantitative insights into aquatic ecosystems.415
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Tables and figures568

Method Abundance estimates 95% Bayesian credible interval

eDNA tracer model 3.31× 107 (2.32× 107, 6.32× 107)
(fish market cells omitted) 2.23× 107 (0.77× 107, 5.29× 107)

Quantitative echo sounder 1.57× 107 (1.51× 107, 1.64× 107)

Table 1. Estimates of Japanese jack mackerel abundance in Maizuru Bay. The second row of
the eDNA method gives the abundance estimate that excluded the nine vertical cells next to
the wholesale fish market (indicated in Figure 2a), which were identified as extraordinary eDNA
sources. The point abundance estimates and credible intervals are presented as posterior medians
and highest posterior density intervals, respectively. In both estimation methods, estimates are
obtained under the assumption that the size of jack mackerel individuals was 3 cm in body
length and 1 g in body weight (see Materials and Methods).
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• Rates are known and are independent of 

the eDNA concentration.

• eDNA particles arise exclusively from 

individuals uniform in their shedding rate. 

(A) Flow field (B) Rate parameters (C) Fish density

• Determined based on given 

environmental conditions. • Stationary in time.

[fish / m3]

(D) Tracer model

• Predicts eDNA concentration on 

discretized cells.

• Can be fitted to eDNA concentration data

under the specified assumptions.

Shedding

Transport

Degradation 

(E) eDNA measurements

• Spatially-replicated samples collected at a 

point in time.

Forward inference

Backward inference

Fig. 1. Conceptual representation of the modeling framework. A tracer model (D) predicts
the spatial distribution of eDNA concentration (E) within an aquatic area of interest under the
specified flow field (A), rates of eDNA shedding and degradation (B), and spatial distribution
of fish density (C). This is a forward inference of the model (blue arrows) represented by the
governing equation (Eq. 2). Population density can be estimated by fitting the tracer model
statistically to eDNA concentration measurements collected at a point of time within the mod-
eled aquatic domain. This is a backward inference of the model (orange arrows) that can be
achieved under the specified flow field and rate parameters in addition to some key assumptions
described by green letters.
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Fig. 2. Maizuru bay, the study site. (a) The 2,276 horizontal lattice grids for the eDNA
tracer model (grey boxes) and the 100 water-sampling stations (blue circles). The grid in which
estimates of jack mackerel density were extremely high is highlighted in red. The building of
the fish market, overlapping with the red lattice grid, is depicted by a filled black box. (b) Fish
abundance estimates (circles: posterior medians; bars: 95% highest posterior density intervals)
in the 2,276 horizontal lattice grids. Abundance estimates in nine vertical cells were pooled for
each grid. The lattice grid next to the market is highlighted in red. (c) The Japanese jack
mackerel (T. japonicus) in Maizuru bay (photo credit: R. Masuda).
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Fig. 3. Observed (upper panels) and predicted (lower panels) spatial distribution of eDNA
concentration in 100 sampling locations. Left, center, and right panels show eDNA concentration
at the surface, middle, and bottom layer, respectively. The color of each point represents the
logarithm of eDNA concentration (copies/L) to base 10. The average concentration of positive
samples was used for observed values. Posterior medians were used for predicted values. For
visualization purposes, data collected from the surface layer of a station next to a wholesale fish
market were omitted. Gray points indicate stations with only negative samples.
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Fig. 4. Posterior predicted value and observed value of eDNA concentration in all samples.
For predicted values, the posterior medians and 95% highest posterior density intervals are
represented by circles and horizontal bars, respectively. The crossed line is the identity line.
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(a) eDNA tracer model
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(b) Quantitative echo sounder
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Fig. 5. Spatial distribution of density of Japanese jack mackerel estimated using (a) the proposed
method and (b) the quantitative echo sounder method. Each panel shows the estimated density
(posterior median) in the horizontal lattice grids, in which the colors represent the logarithm
of fish density (individuals per 1 m3) to base 10. Note the difference in the color scales. The
uppermost color categories include a small number of outliers. In panel (a), the grid cell next
to the fish market with an extremely high estimated density is highlighted in red. In panel (b),
the horizontal lattice grids without quantitative echo sounder data are shown in gray.
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